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TRANSONIC  PERFORMANCE O F  A 
MACH 2.65 AUXILIARY  FLOW 

AXISYMMETRIC  INLET 

By Don M. Santtnan 
Ellco  Engineering  Incorporated 

SUMMARY 

Transonic wind tunnel  test  results  for  a large scale auxiliary  airflow  axisymmetric  inlet 
model designed for Mach  2.65 are  presented. The inlet  is  a  mixed-  compression  translating 
centerbody  type  with  a  cowl  lip  diameter  of 50.8 cm.  The  inlet  incorporated  both  centerbody  and 
cowl  auxiliary  airflow  systems to  augment  the  main  duct  transonic  airflow  capacity.  The on-design 
subsonic  diffuser is short  relative to  current designs  resulting in an inlet  only  1.63  cowl lip diameters 
long  measured  from the  cowl  lip  to  the  compressor face. 

Major objectives  of  the  test were to  obtain  compressor-face  performance  data  with  and 
without  auxiliary  airflow,  to  determine  maximum  transonic  capture  airflow  for  acceptable  engine 
operation,  and to determine  auxiliary  and  main  duct  airflow  matching  characteristics.  Also, 
subsonic  diffuser  performance  with  the  centerbody  located in the Mach 2.65  design  position was to  
be  evaluated.  The  tests were conducted  over  the Mach number  range  from  0.6  to 1.3 and  angles of 
attack  up  to  eight  degrees  at  subsonic Mach numbers  and  four  degrees a t  supersonic Mach numbers. 

The  fully  open  centerbody  auxiliary  system  provided  compressor-face  performance :such 
that,  at  0.10  total-pressure  distortion,  the  total  capture mass-flow ratio increased 0.055 and 0.051 
and the  total-pressure  recovery  increased 0.015 and  0.012  at Mach 0.9  and 1.3, respectively.  Test 
results  indicated  that  operation of the  centerbody  auxiliary  system  resulted in main duct  flow 
separation on the  centerbody.  This  separation  reduced  the  effective main duct flow  area at  the 
auxiliary duct  exit  station  and  permitted  choking  of  the  auxiliary  duct  throat  flow  prior  to  choking 
of  the  main  duct  throat  flow. 

Cowl  auxiliary  airflow  had  a  detrimental  effect  on  compressor-face  total-pressure  recovery 
and  distortion.  Replacement  of  the.  cowl  auxiliary  duct  porous  bypass  screen,  which  separates  the 
auxiliary duct  plenum  and  main  diffuser  duct,  with  a  flap  arrangement is recommended  to  provide 
efficient  merging  of  auxiliary  and  main  duct  airflows.  Simultaneous  choking  of  auxiliary  and  main 
duct  throat  flows was not achieved at  supersonic Mach numbers  because  of  reduced  auxiliary 
airflow  recoveries. A flap  arrangement  which  provides  auxiliary  duct  exit  area  .adjustment is 
recommended  to  provide  similar  choking  characteristics.  Achievement  of  acceptable  cowl  auxiliary 
duct  performance  at Mach 1.3  is.  questionable  because  of  strong  shock  boundary-layer  interaction 
effects  upstream  of  the  auxiliary  duct  entrance. 

A ,  high  subsonic  diffuser  total-pressure  recovery  of  0.965  and a ,  compressor-face 
total-pressure  distortion of 0.10 was  achieved  with  the  centerbody  located  in  the  on-design  position 
and  with  a  throat Mach number  of 0.8. 



INTRODUCTION 

Mixed-compression axisymmetric  inlets  are receiving  increased study  for use on advanced 
supersonic  transport  aircraft (refs. 1, 2 and 3). Potential  installed  performance  benefits  such  as 
reduced  weight  and  drag  with  high  internal  performance  prompts  selection  of  axisymmetric  rather 
than  two-dimensional  inlets.  Realization  of  these  benefits,  however, is hampered  because of 
inherently  low  transonic  airflow  capability  of  this  type  of  inlet  with  only  a  translating  centerbody 
for off-design operation. 

One way of increasing the  transonic  airflow  capability to  satisfy the airflow  demands  of 
most engines is through use of collapsing rather  than  translating  centerbody  systems.  The 
practicality of these  systems,  however, is doubtful considering  leakage  and  boundary-layer bleed 
compartmentalization  problems  associated  with  a  multi-segmented  centerbody.  Attempts to 
increase the  transonic  airflow  of  translating  centerbody  systems  by  reducing  the  centerbody 
maximum  diameter  results  in  a  centerbody design which  requires  a  “traveling” bleed system.  That 
is, the  reduced  centerbody  diameter  forces  the  geometric  throat to remain  fixed on  the  cowl.  Thus, 
the  centerbody  throat bleed must  shift or “travelyy  with  centerbody  translation  to  remain  opposite 
the fixed  cowl  throat  bleed. 

The  intake  developed  by  Boeing  under  the  supersonic  transport  program  employed  a 
translating  centerbody  and  a variable  cowl  (ref. 4). The variable  cowl  provided  increased  transonic 
airflow  capability by increasing the inlet throat  area.  Although  the  variable  cowl  system was 
mechanically  practical, it was relatively  complex  and  accounted  for  a large fraction  of  the  inlet 
weight. The inlet  also  employed  a  centerbody  traveling bleed system.  A simplified  inlet  was 
subsequently  developed  by  NASA  Ames  (ref.  S).which  employed  a  fixed cowl. Transonic  airflow 
considerations  required,  however,  that  the  inlet  be oversized at  the cruise Mach number which 
resulted  in  increased  weight  and  drag. 

Centerbody  and  cowl  auxiliary  airflow  systems  which  augment  the  airflow  capability  of 
translating  centerbody  inlets have  been  proposed  by NASA Ames  (ref. 6). Centerbody  auxiliary 
airflow is achieved by  aft  translation  of  the  forward  portion  of  the  centerbody  to  create  an  annular 
opening  which  permits  auxiliary  airflow to pass through  the  centerbody  and  merge  with  the  main 
duct  airflow.  The  proposed  cowl  auxiliary  system  employs  external cowl scoops  which  open to 
allow  auxiliary  airflow to pass through  the  cowl.  Application  of  either  auxiliary  airflow  system 
permits  the  maximum  centerbody  diameter to be  increased  sufficiently to eliminate  the  need  for  a 
centerbody  traveling bleed system.  That is, as the  centerbody  translates  for off-design operation,  the 
geometric  throat  remains  fixed  on  the  centerbody  rather  than  on  the  cowl.  Elimination  of  the 
traveling  bleed system also permits  a  reduction  in  subsonic  diffuser  length  by  allowing  the 
centerbody  support  struts  to  penetrate  the  aft  portion  of  the  centerbody. 

This  report  presents  an  experimental  evaluation  of  centerbody  and  cowl  auxiliary  airflow 
systems  installed  in  a Mach 2.65 mixed-compression  inlet.  The  test  inlet was approximately  a 
1/3-scale model  of  the auxiliary  inlet  concept  developed  by  the NASA  Ames  Research Center. 
Model  design, fabrication,  and  testing was conducted  by Ellco  Engineering,  Inc. The Los Angeles 
Aircraft Division of  Rockwell  International  provided  testing  assistance.  The  test was conducted  in 
the NASA  Ames 1 1-by 1 I-ft  Unitary Plan Wind Tunnel  Facility  over  the Mach Number  range  from 
0.6 to 1.3 and  for angles of  attack  up to 8 degrees a t  subsonic Mach numbers  and 4 degrees a t  
supersonic  Mach  numbers. 
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Major  objectives of the  test were to  obtain  the  effect  of auxiliary  airflow on 
compressor-face  performance, to  determine  maximum  transonic  capture  airflow  for  acceptable 
engine  operation,  and to  determine  auxiliary  and  main  duct  airflow  matching  characteristics. Also, 
the  performance of the  short  subsonic  diffuser  with  the  centerbody  located in the Mach 2.65 
position was to  be  determined. 
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SYMBOLS 

cowl  auxiliary duct  throat area 

centerbody  auxiliary  duct  throat  area 

cowl  lip  area 

flow  area at  inlet  station  X 

duct  height 

freestream Mach number 

inlet  main duct  throat Mach number 

static  pressure 

cowl  auxiliary  duct  plenum  static  pressure 

total pressure 

area  weighted total  pressure  at  compressor  face 

area  weighted total pressure at cowl  auxiliary duct  entrance 

area  weighted  total  pressure  at  centerbody  auxiliary  duct  exit 

inlet  main  duct  flow  area  weighted  total  pressure 

maximum  total  pressure  at  compressor  face 

minimum  total  pressure  at  compressor  face 

freestream  total  pressure 

average compressor  face ring  recovery 

radius 

cowl  lip radius 
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thickness 

weight  flow 

cowl  auxiliary  airflow 

centerbody  auxiliary  airflow 

inlet  main  duct  airflow 

theoretical  freestream  flow  through  area  equal  to  cowl  lip  area 

inlet  total  capture  airflow 

inlet  station (X = 0 at  centerbody  tip  station  with  centerbody  in  forward  transonic 
position) 

cowl auxiliary  duct  width 

distance  from  surface 

centerbody  translation  from  full  forward  position  (X = 0) 

forecone  translation  from full forward  position (X = 0) 

angle of attack 

TEST APPARATUS 

Model  Description 

The  test  inlet was a Mach 2.65 axisymmetric  inlet  model  which  incorporated  centerbody 
and  cowl  auxiliary  airflow  systems. The inlet  was  a  mixed-compression  translating  centerbody type 
with  a  cowl lip diameter  of 50.8 cm (approximately 1/3 scale). A schematic  representation  of  the 
inlet is presented in figure 1. Model photographs  are  presented  in  figures 2 and 3. 

Centerbody  translation was achieved  manually.  The  aft  section  of  the  centerbody was 
slotted to  accommodate  the  centerbody  support  struts  with  the  centerbody  in  the Mach 2.65 
(on-design)  position  (illustrated in upper  portion of figure 1). Removable  centerbody fairings  were 
located  between  the  support  struts.  These fairings reduce  the  size  of  the  aft  facing  step  at  the  exit  of 
the  centerbody  auxiliary  airflow  system  with  the  centerbody in the on-design position.  Triangular 
vortex  generators  were  located  on  the  cowl  and  centerbody.  The  vortex  generators were  arranged  in 
pairs  as  illustrated  in  figure 4. Cowl  and centerbody on-design contours  are  presented in table I. 
Table I1 presents  support  strut  and  centerbody  fairing  contours. 
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The  centerbody was  designed so that  the  forecone  could  be  remotely  actuated to allow 
auxiliary  airflow  to pass through  the  centerbody to the simulated  compressor  face (see  lower 
portion  of  figure 1). The  centerbody  contained  an  annular  internal passageway which  transitioned 
into twelve  flow ducts  by use of  the webs  illustrated in sections B-B and C-C of  figure 1. The webs 
simulate the  external  dimensions  of  the  hollow  webs  which  would  be  required to pass the bleed 
flow of an  actual  inlet  with  a  boundary  layer bleed  system  (a bleed  system is required to  control 
boundary-layer  separation  during  started  inlet  operation  at  supersonic  speeds). 

Referring to  the area  distributions  presented in figure 5, the full aft  forecone  position 
(AXFC/RL = 1.38)  resulted  in  an  auxiliary  duct  throat to capture  area  ratio (AcB/AL) of 0.107. 
Combining  this  throat  area  with  that  of  the main duct  with  the  centerbody  located  in  the  transonic 
position  results in a  total  throat  to  capture area  ratio of 0.632.  Although  this  combined  throat  area 
would  permit  a  theoretical  maximum  capture mass-flow ratio  of  0.632  at Mach 1.0 which 
approximately  equals  the  airflow  capability  of  the U.S. SST prototype inlet  system  (ref. 6), a 
second  geometric  throat  located  in  the  diffuser  duct  at  station  X/RL = 6.64 (mid-plane  of 
centerbody  support  struts)  limits  the  maximum  total  capture mass-flow ratio to a  value of 0.568. 
This  latter  throat was formed  as  a  result  of  the  short  subsonic  diffuser design  combined  with 
relatively thick  centerbody  support  struts which simulate  the  thickness  required  to pass the 
centerbody bleed  flow of  an  actual  inlet. 

The  model  contained  four  manually  positioned cowl doors  which  form  scoops allowing  cowl 
auxiliary  airflow to pass through  the  porous  bypass  screens  to  the  simulated  compressor  face.  Two 
door  positions  which  result  in  auxiliary  duct  entrance  areas of 10 and 20 percent  of  inlet  capture 
area  were  available. The cowl door  inner  surface was contoured  to achieve  a  linear duct Mach 
number  distribution  assuming Mach 1 .O at  the  entrance  (station  X/RL = 5.635)  and Mach 0.3  at  the 
duct  exit  into  the  plenum  (station  X/RL = 6.235).  The auxiliary duct sidewalls were parallel. The 
duct  width was sufficient  to  admit  auxiliary  flow over the  entire  circumference  between  the  support 
struts. 

The bypass  screen  consists of 0.098 cm diameter  holes  spaced to  provide  a porosity  of 
40  percent. Blank-off  plates for  reducing  the  screen  open  area  by 50 percent were  also  available. 
The plates  were  installed on  the plenum  side  of  the screen between  stations X/RL = 6.543 and 
X/RL = 6.848  just  upstream of the compressor  face. 

The  inlet was mounted  to a  NASA-Ames  supplied  sting-body  assembly  which contained  a 
flow  control plug. The flow  control  plug  and  the  inlet  forecone  were  remotely  positioned using 
electrohydraulic servo control valves. 

Instrumentation 

Pressure data  acquisition was accomplished  through use of twelve 24-port scanivalves 
located  within  the  inlet  diverter.  The  inlet  static  and  total-pressure  instrumentation  consisted  of  the 
following. 

0 Fifty-two  internal  cowl  and  centerbody  surface  static  taps  and  fourteen  external 
cowl  static  taps. 

0 Four cowl  auxiliary  duct  plenum  statics. 
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0 Two six-probe  total-pressure  rakes  located  in the  main  duct  at  the  throat  station 
(X/RL = 4.3 1). These  rakes  were  used  for  calibration  of  the  main  duct  airflow  and 
were  installed  only  during  calibration  tests. 

0 Two six-probe  total-pressure  rakes  located  within two  of  the  centerbody auxiliary 
flow  ducts  at  station  X/RL = 3.7. These  rakes were  used for calculating  centerbody 
auxiliary  airflow. 

0 Two six-probe  total-pressure  rakes  located at  the  cowl  auxiliary  duct  entrance 
(X/RL = 5.635).  These  rakes were  used for calculating  cowl  auxiliary  airflow. 

0 Two twelve-probe  total-pressure  rakes  located at  station  X/RL = 5.175  coincident 
with  the  centerbody  auxiliary  duct  exit. Six probes  of  each  rake were  utilized  for 
survey of  the auxiliary duct  exit  flow while the remaining six probes were used for 
survey of  the  main  duct  flow.  These  rakes were  installed  only  for  the survey  tests. 

Compressor-face  instrumentation,  located in the sting-body  assembly,  consisted of  56 
total-pressure  probes. The  rake  consisted  of  eight  seven-probe  arms. 

ON-DESIGN  DIFFUSER  PERFORMANCE 

Test  results  illustrating  vortex  generator  and  centerbody  fairing  effects  on  subsonic  diffuser 
performance  are  presented  in  this  section.  The  tests  were  conducted  with  the  centerbody  in  the 
Mach 2.65 design position  which  results  in  a  very  short  subsonic  diffuser  and high adverse  pressure 
gradients.  Although  the  tests were conducted  at  a  freestream Mach number  of 0.9 rather  than Mach 
2.65,  the  results  provide  an  indication  of  the  subsonic  diffuser  performance to  be expected  at Mach 
2.65.  Specifically,  test  results  obtained  with  a  throat Mach number  of  approximately 0.8 (Mach 
number  downstream  of  a Mach 1.25  terminal  shock)  may be representative  of the  performance 
obtained  with  a  throat Mach number  of  1.25 (Mach 2.65  operation)  provided  the  terminal  shock is 
near  the  throat  and  sufficient  boundary-layer bleed is used to  prevent  boundary-layer  separation 
downstream  of  the  terminal  shock  boundary-layer  interaction. 

Vortex  Generator  Effects 

The cowl vortex  generators  had  a  detrimental  effect  on  compressor-face  performance. 
Compressor-face  recovery  and  distortion  data  illustrating  this  effect  are  presented  in  figure  6  as  a 
function  of  throat Mach number.  For a throat Mach number  of 0.8 the recovery is reduced 0.04 and 
the  distortion  is  increased 0.04 by  installation  of  the  cowl  vortex  generators.  Compressor-face  rake 
total-pressure  profiles  presented in figure 7 for a throat Mach number of 0.75 show  that  the 
reduced  performance is due  to  'formation  of  a  low  recovery region near  the  cowl. Also, localized 
cowl  flow separation  occurs  in  the  lower  right  quadrant  (rake 4, looking aft)  upon  installation  of 
the cowl  vortex  generators. 

Cowl  surface  static pressure distributions  presented in figure 8 for  a  throat Mach number  of 
0.75 indicate  that cowl  flow separation is occurring  at  approximately  X/RL = 6.1 which is 
coincident  with  the  location  of  the  cowl  vortex  generators.  The  pressure  distributions  indicate  that 
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the  separation  point is not  influenced  by  either  installation  or  removal  of  the  cowl  vortex 
generators.  Installation  of  the  cowl  vortex  generators  apparently increases the  separation  length 
which  results in the low  recovery  flow  region  near the cowl at  the compressor-face  station,  as 
indicated  in  figure 7. If the  separation  mechanism is the adverse  pressure  gradient associated with 
area  divergence, relocation  of  the  cowl  vortex  generators  may  improve  the  performance.  However, if 
flow  recirculation  through  the  bypass  screen is the  separation  mechanism,  relocation  of  the 
generators  would  not  significantly  improve  compressor-face  performance. 

Data  illustrating  the  effect  of  installing  both  centerbody  and  cowl  vortex  generators  are 
presented in figure 9. Due  to  model  difficulties  during  the  test  run,  test  data were not  obtained  for 
subsonic  throat Mach numbers  greater  than 0.75 with  the  vortex  generators  removed.  Extrapolating 
the  data  to a throat Mach number  of 0.8 indicates  that  the  recovery  would be reduced 0.045 and 
the  distortion  increased 0.04 by  installation  of  both  cowl  and  centerbody  vortex  generators. 
Although  these  increments  are similar to those  obtained  by  installation  of  only  the  cowl  vortex 
generators (fig. 6 )  a  direct  comparison is not possible  since the  data shown  in  figure 9 were obtained 
with  the  centerbody  fairing  installed while the  data  presented  in  figure  6 were obtained  with  the 
cen.terbody  fairing  removed  (centerbody  fairing  effects  for  a  fixed  vortex  generator  geometry  are 
presented  later). 

Compressor-face  rake  profiles  presented in figure 10 indicate  a large recovery  decrease  near 
the cowl and  a slight  recovery  increase  near the  centerbody  upon installation  of  both  cowl  and 
centerbody  vortex  generators.  These  profile  trends  are similar to  those  obtained by  installation  of 
only  the  cowl  vortex  generators  and  indicate,  therefore,  that  the  centerbody  vortex  generators  do 
not degrade the  transonic  performance.  Vortex  generator  optimization  studies  at Mach 2.65  may 
indicate,  however,  that  the  generators  are  required  to achieve an  acceptable  distortion level at  the 
required  stability margin. 

Centerbody  Fairing  Effects 

Compressor-face  performance was improved  by  installation  of the  centerbody fairing. 
Installation of  the fairing  increased the recovery 0.005 and  reduced  the  distortion  approximately 
0.01 5 for a throat Mach number of 0.80, as  shown in figure 11 .  Installation of the fairing tends to 
divert the flow  towards  the  centerbody.  Compressor-face  total-pressure  profiles  illustrated in 
figure 12,  show  that  the  flow  redirection  increases  the  recovery  near  the  centerbody  and  decreases 
the recovery  near  the  cowl  except  in  the  lower  right  quadrant  where  cowl  flow  separation is present. 
The  data  shown  in figures 1 1 and  12 were obtained  with  the  cowl  and  centerbody  vortex  generators 
installed.  Thus,  as previously indicated in figure 7, cowl  flow  separation  in  the  lower  right  quadrant 
is expected. 

Optimum  Configuration 

Optimum  compressor-face  performance was achieved with  the  vortex  generators  removed 
and  the  centerbody  fairing  installed.  A high subsonic  diffuser  recovery of 0.965  and a  distortion  of 
0.10 (considered  acceptable  for  steady  state  engine  operation) was achieved with  a  throat Mach 
number  of  approximately 0.8. As previously mentioned,  this  subsonic  diffuser  performance  might 
also be  achieved at Mach 2.65  provided  that  the  terminal  shock is near  the  throat  (operation  at 
critical  point)  and  sufficient  throat  boundary-layer bleed is used to prevent  boundary-layer 
separation  downstream  of  the  terminal  shock  boundary-layer  interaction. 
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CENTERBODY AUXILIARY FLOW 

Test  results  obtained  with  the  centerbody  located  in  the  forward  transonic  position  and 
with  the  forecone  located  in  the  forward,  intermediate,  and  aft  positions  are  presented.  The  latter 
two  forecone  positions  result  in  centerbody  auxiliary  duct  throat to capture  area  ratios (AcB/AL) 
of  0.053  and 0.107, respectively. The  tests  were  conducted  with  only  the  centerbody  vortex 
generators  installed.  The  bypass  screen blank-off plates were  also  installed. 

Compressor-Face  Performance 

The  centerbody  auxiliary  flow  system  appears  to  be  a  sound  approach  to increasing 
transonic  airflow.  That is, in general,  an  increased  auxiliary  duct throat area was accompanied by 
decreased  total-pressure  distortion  and increased  total-pressure  recovery  and  maximum  total  capture 
flows.  Figures 13 and 14 present  compressor-face  performance  for  freestream Mach numbers of 0.9 
and  1.3, respectively. For a  compressor-face  distortion  of  0.10,  the full open  auxiliary  duct  provides 
a  0.01 5 increase  in  compressor-face  recovery  and  a  maximum  total  capture mass-flow ratio increase 
(AWT/WL) of 0.055 at Mach 0.9. At Mach 1.3, the auxiliary duct provides  a  0.01  2  increase in 
recovery  and  a  maximum  total  capture mass-flow ratio  increase of 0.051. 

As previously mentioned,  the  maximum  total  capture  airflow  with  the  full  open  auxiliary 
system is limited  by  choking  at  the  diffuser  duct  throat  formed  in  the  strut region at X/RL = 6.64. 
Assuming  a choked  diffuser  throat  flow,  the  theoretical  maximum  total  capture mass-flow ratios  are 
estimated  to be 0.575 and 0.603 at Mach 0.9 and  1.3,  respectively.  The Mach 0.9 estimate  assumes 
a  diffuser  throat  total pressure equal  to freestream  total  pressure.  For  the Mach 1.3 estimate,  the 
diffuser  throat  total pressure was assumed equal to the  total pressure  downstream  of  a Mach 1.2 
(centerbody  forecone  surface Mach number)  terminal  shock.  As  indicated  in figures 13 and  14,  the 
auxiliary  system  provides  a  theoretical  maximum  total  capture mass-flow ratio increase (AWT/WL), 
defined as the mass-flow ratio  difference  between  a  choked  diffuser  duct  and  a  choked  inlet  main 
duct,  of 0.043 and  0.045  at Mach 0.9 and  1.3,  respectively. 

At Mach 0.9, the  characteristic  drastic  reduction  in recovery at  a  fixed  maximum  capture 
mass-flow ratio was not  obtained  for  the  intermediate  or full open  auxiliary  duct  throat  area 
settings (fig. 13).  The  reason  for  this was that  the  back  pressure  at  the  flow  control plug was not 
sufficiently  low to  choke  the flow at  the  diffuser  throat  (station X/RL = 6.64).  It was  possible, 
however, to choke  the  inlet  main  duct  flow  with  the  auxiliary  duct  fully  closed.  At Mach 1.3  the 
back  pressure was reduced  sufficiently to  achieve choked  diffuser  throat  flow  for all  auxiliary duct 
throat area  settings (fig. 14). 

The  maximum  total  capture mass-flow ratio  obtained  with  the  auxiliary  duct full open 
exceeds the calculated  maximum  assuming  choked  diffuser  throat  flow (see  figures 13  and 14). 
Airflow  leakage through  the  bypass  screens  downstream  of  the  diffuser  throat is believed primarily 
responsible for this  result eventhough  blank-off  plates were  installed on  the  plenum side of  the 
screens.  The  probable  explanation is that  the leakage  flow path  length was quite large since the 
blank-off  plates  were  installed  in  four  sections  within  each  plenum  chamber  (four  plates  were 
required  since  three  longitudinal webs  were  installed in  the  plenum  chamber  to  provide  structural 
support  for  the  screens). 
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Duct  Performance 

The auxiliary duct  exit area  was sized to achieve  simultaneous  choking  of  the  auxiliary  and 
main  duct  throat  flows  with  the  auxiliary  duct  full  open (AcB/AL = 0.107). Simultaneous  choking 
is desirable  since  it  results  in  a  maximum  recovery at  the  maximum  capture  airflow  (both  ducts 
choked).  Specifically,  an oversized  auxiliary duct  exit will result  in  supercritical  auxiliary duct flow 
prior  to  choking  of  the  main  duct  throat flow. Correspondingly,  an  undersized  auxiliary  duct  exit 
will result  in  supercritical  main duct flow  prior to choking  of  the  auxiliary  duct  throat  flow.  Thus, 
an  improperly sized exit will cause premature  choking in one  of  the  ducts resulting  in  supercritical 
duct  flow  with excessive  recovery  losses prior to attainment  of  the  maximum  capture  airflow. 

The  capture  flow  capability  of  the  auxiliary  and  main  ducts  at Mach 0.9 and 1.3 are 
presented  in  figures  15  and 16, respectively. At  the  intermediate auxiliary duct  opening (AcB/AL = 
0.053), the auxiliary throat flow  chokes  prior to the  main  duct flow  as  evidenced  by the near 
invariance of  the auxiliary  mass-flow ratio  with  total  capture mass-flow ratio.  This  result is 
expected, as mentioned  above,  since  the  auxiliary  duct  exit to  throat area  ratio  at  the  intermediate 
setting is larger than  required  for  simultaneous  choking  of  both  duct  throat flows. 

Since the  maximum  total  capture  airflow was  limited  by  choking  at  the  diffuser  duct  throat 
formed in the  strut region, it was not possible to choke  both  the  auxiliary  and  main  duct  throat 
flows  with the auxiliary duct full open  (AcB/AL = 0.107).  However,  extrapolation  of  the mass-flow 
data  to critical  mass-flow  values (indicated  by  horizontal dashed  lines in figures 15 and  16)  indicates 
that  the auxiliary duct  throat flow  would  also  choke  prior to  choking  of  the  main  duct  throat  flow. 
This  choking  sequence is due  to flow  separation  on  the  centerbody  which  reduces  the  effective main 
duct  flow  area  at  the  auxiliary  duct  exit  station. 

Auxiliary and  main  duct  total-pressure  profiles  at  station X/RL = 5.175  (auxiliary  duct  exit 
station)  are  presented in figure 17 which  illustrates the  centerbody  flow  separation  obtained  at 
Mach 0.9  with  the full open auxiliary duct. Also presented  are  cowl  and  centerbody  static  pressure 
distributions.  Centerbody  flow  separation is evident  by  a  measured  total pressure  which is less than 
or  equal  to  the  interpolated  static pressure  indicated  by  dashed  lines in figure 17.  Flow  separation 
occurs over the  capture mass-flow ratio range tested  and  becomes  more  extensive  at  the  lower 
capture  airflows.  The  difference  between  the  measured  and  predicted  static  pressure  distributions 
(lower  portion  of figure 17) is not  sufficient to locate  the  separation  point. 

For  a  fully  closed  auxiliary duct, main  duct  total-pressure  profiles  presented in figure 18 
show  that  separation was evident  at  the low  capture  airflows  but was not evident  at  the  higher 
capture  airflows  where  separation was obtained  with  the full open  auxiliary  duct. Similiar  results 
were obtained  at Mach 1.3 as  shown  in figure 19  which  presents  duct  total-pressure  profiles  with 
and  without auxiliary  airflow. The  results  indicate  that,  at  the  high  capture  airflows,  centerbody 
flow  separation is induced  by  the  presence  of  auxiliary  airflow. 

Separation  occurs  on  the  centerbody  near  the  cowl  lip  station  and  the  resulting  low  energy 
flow  near  the  centerbody  may  be  partly  responsible  for  the  main  duct  flow  separation  observed  at 
the  auxiliary  duct  exit  station X/RL = 5.175.  Total-pressure  profiles at  the inlet  main  duct  throat 
station (X/RL = 4.3 1)  which  illustrates the low  energy  flow  are  presented  in  figure 20 for Mach 
numbers  of 0.9 and 1.3. The  low  energy region is somewhat  more  extensive  at Mach 1.3 because  of 
terminal  shock  boundary-layer  effects  upstream of the cowl lip. The  low  energy region is also more 
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extensive at  the  low mass-flow  ratios. Centerbody  surface  static  pressure  distributions  upstream  of 
the  main  duct  throat  are  presented in  figure 21  for  a Mach number  of 1.3. At  the high capture 
mass-flow ratio  the  terminal  shock is near  the  cowl  lip  and  localized  flow  separation is present  on 
the  centerbody.  This  separation is evident  because  of  the  large  difference  between  the  measured  and 
predicted  internal  duct  pressure  distributions  near  the  cowl  lip.  At  the  lower mass-flow ratios,  the 
separation  in  the  cowl  lip region becomes  more  extensive  and  reduces  the  effective  lip  flow  area  to 
result  in  approximately  a  constant  static  pressure  between  the  lip  and  throat  stations. 

Auxiliary  and  main  duct  exit  recovery  characteristics  at  X/RL = 5.175 and at  the  throat  for 
the main duct  are  presented in  figures 22 and 23  for Mach numbers  of 0.9 and 1.3, respectively. For 
the  intermediate  auxiliary  duct  opening (AcB/AL = 0.053), supercritical  auxiliary duct flow is 
present  as  evidenced by  the large  auxiliary  airflow  total-pressure  recovery loss with  increasing 
capture mass-flow ratio. With the auxiliary duct full  open,  the  exit  total-pressure  recovery is 
relatively  invarient with  capture  airflow  indicating  that  the  duct  flow was not  choked.  The  auxiliary 
duct total-pressure  recovery data  shown  for  the  fully closed duct is merely  the  static  pressure 
measured at  the  exit  station. 

The  upper  portions  of  figures  22  and  23  present  inlet  main  duct  total-pressure  recovery  at 
the  throat  (X/RL = 4.31) and at  the  station  corresponding  with  the  auxiliary  duct  exit 
(X/RL = 5.1 75). The  throat  total-pressure  recovery is lower at  the lower  capture  airflows  because of 
separation  upstream  of  the  cowl  lip (fig. 20). Also,  terminal  shock  losses  result in lower  overall 
recoveries at Mach 1.3. The main  duct  flow  total-pressure  recovery loss between  the  throat  and 
station  X/RL = 5.1 75 is due primarily to  centerbody flow  separation. 

Compressor-Face  Profiles 

Compressor-face  ring  total-pressure  recovery  and  distortion  characteristics  are  presented in 
figures 24 and  25  for  a Mach number  of 0.9 and  for  various  auxiliary  duct  throat  areas.  At  the  low 
capture mass-flow ratios  the  flow  near  the  centerbody  has  the  lowest  total-pressure  recovery.  The 
total-pressure  near  the  centerbody  and  the  extent  of high  total-pressure  core flow is increased  as  the 
auxiliary  duct is opened because of  increased  auxiliary  flow  total-pressure  recoveries.  However, as 
the  maximum  capture mass-flow ratio is approached,  the  lowest ring  total-pressure  recovery  occurs 
near  the  cowl  surface.  Referring  to  figure  25,  the ring  total-pressure  distortions  are  relatively small 
at  the  lower  capture mass-flow ratios  but  become large near  the  cowl  at  the  higher mass-flow ratios. 
A low  total-pressure  region  located in the  lower  right  hand  quadrant of the  inlet  (looking  aft) is 
responsible for  the large distortions.  The  circumferential  total-pressure  variation  shown in figure  26 
for ring number  one  (ring  nearest  the  cowl)  illustrates  this low  total-pressure  region  (see  160" 
location).  Inlet  distortion  trends  at  other  test Mach numbers were  similar to those  shown  for Mach 
0.9  and  are  not  presented. 

Elimination of the localized  low  total-pressure  region  would  significantly  improve 
compressor-face  performance. That is, for  the Mach 0.9 data  shown in the  lower  portion  of figure 
26  for  a  total  capture mass-flow ratio  of 0.588, the compressor-face  distortion  would be reduced 
from  0.12  to 0.05 by elimination of the  low  total-pressure  region. The compressor-face  recovery 
would  be  increased  slightly  from 0.984  to  0.986. 
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Centerbody  Fairing  Effects 

Limited  tests were conducted  with  the  centerbody  fairing  installed.  Although  the fairing 
resulted  in  reduced  compressor-face  performance,  the  results  are  not  indicative  of  the  performance 
to be expected  for a  more  realistic  diffuser design. Installation  of  the  fairing  further  reduced  the 
diffuser  throat  area  in  the  strut region and  resulted  in  unrealistically  high  diffuser Mach numbers. 
Redesign of  the  diffuser  to  eliminate  the  diffuser  throat  would  provide  lower  duct Mach numbers 
and  reduced  centerbody  fairing  effects. 

Angle-of-Attack  Performance 

Operation  at angle of  attack resulted  in  a  slight  compressor-face  recovery  reduction  and 
distortion  increase.  The largest effect  of angle of  attack was to  reduce  the  capture  airflow range for 
stable  inlet  operation.  Figures  27  and 28  illustrate  these  performance  trends.  The figures  present 
compressor-face  performance  with  the  auxiliary  duct  fully closed  (AcB/AL = 0.0) and  for Mach 
numbers  of 0.9 and  1.3,  respectively. At  Mach 0.9, the stable  capture mass-flow ratio range 
(AWT/WL) was reduced  from  0.22  at  zero  degrees angle of  attack to 0.1 1 at  eight degrees angle of 
attack.  At Mach 1.3,  the  stable  capture mass-flow ratio range was reduced  to  zero  at  four degrees 
angle of attack.  That is, at  four degrees  angle of  attack, flow  instabilities  were  initiated  immediately 
upon  unchoking  of  the  main  duct  throat  flow. 

Figures 29  and 30 show  that  somewhat similiar performance  trends were obtained  with  the 
auxiliary duct full open. However, at Mach I .3 (figure 30), a  larger stable  capture  airflow range was 
achieved.  Auxiliary duct injestion  of  the  forecone  boundary  layer  results  in  a  thinner  centerbody 
boundary  layer.  This  in  turn  may  result  in less severe shock  boundary-layer  interaction  effects  and 
permit  operation  with  a  greater  stable  capture  airflow range. 

Figure 3 1 summarizes  angle-of-attack  effects. The figure presents  compressor-face  recovery 
and  distortion  data  with  the  auxiliary  duct  fully closed and  fully  open  and  for  total  capture 
mass-flow ratios  of  0.52  and 0.58, respectively. The  capture mass-flow ratios  selected  for  data 
presentation  correspond  to  the  maximum values obtained  at Mach 0.9 and  eight  degrees  angle  of 
attack.  Although  operation  at  lower angles of  attack  resulted  in higher maximum  capture  airflows, 
the mass-flow ratio values  selected  permit  performance  comparison  over  the  complete Mach number 
and  angle-of-attack  range. 

Diffuser Contour 

Recontouring  of  the  inner  cowl  subsonic  diffuser  surface  and  the  centerbody  support  struts 
is  required to eliminate  the  diffuser  second  throat.  Reducing  the  thickness  of  the  centerbody 
support  struts  would  eliminate  the  throat. However, strut cross-sectional  area  requirements  for 
passage of  centerbody bleed  flows may  result  in  a  prohibitive  strut  length  considering  that  the  short 
subsonic  diffuser  requires  the  struts to penetrate  the  aft  portion  of  the  centerbody.  Achievement  of 
a  satisfactory on-design subsonic  diffuser  area  distribution  with  adequate  strut passageway  area 
probably  requires  lengthening  of  the  subsonic  diffuser. 

11  



COWL AUXILIARY FLOW 

Subsonic  Operation 

Compressor-face  performance. - Cowl  auxiliary  flow  had  a  detrimental  effect  on 
compressor-face  performance.  Compressor-face  recovery  and  distortion  data  illustrating  this  effect 
are  presented  in figure 32  for various  auxiliary duct  capture area  ratios (Ac/AL) and  for  a 
freestream Mach number  of 0.9. The results  show  that  a  relatively  small  increase  in  total  capture 
mass-flow ratio is accompanied  by  reduced  recoveries  and  a large distortion increase.  A low  energy 
flow  region near  the  cowl  is  responsible  for  the  reduced  performance  as  shown  in figures 33 and 34 
which  present  compressor-face  rake  profiles  for  the  intermediate  (Ac/AL = 0.1) and  full  open 
(Ac/AL = 0.2)  auxiliary  ducts,  respectively.  As discussed  in  a  following subsection,  the  reduced 
compressor-face  performance  is  a  result  of  auxiliary  flow  injection  into  the  main  duct  flow  through 
normal holes. 

Duct  matching. - Back  pressure  limitations  prevented  attainment  of  choked  auxiliary  and 
main duct  throat flows at Mach 0.9. Thus,  a  quantitative  determination  of  the  auxiliary  and  main 
duct  choking  sequence  could  not  be  made. As previously  discussed, to ensure  operation  at  a 
maximum  capture  airflow  with no  recovery loss due to supercritical  duct  flows,  it  is  desirable  that 
both  duct  throat  flows  choke  simultaneously.  Duct  airflow  characteristics  presented  in figure 35 
show  that,  at  the  maximum  total  capture mass-flow ratio,  the  intermediate  and full open auxiliary 
ducts  provide  auxiliary mass-flow  ratios (WC/WL) of 0.07  and 0.11, respectively,  as  compared to 
critical  values of  approximately 0.1 and 0.2 assuming  choked  flow  at  the  duct  entrance.  Inlet  main 
duct mass-flow ratios (WI/WL) are 0.03  and  0.06  lower  than  critical  for  the  intermediate  and full 
open  auxiliary  ducts.  Extrapolation  of  the  auxiliary  and  main  duct  airflow  data to  critical  values 
qualitatively  indicates  a  proper  match  between  the  ducts  for  the  intermediate  auxiliary  duct 
opening. The  difference  between  critical  and  measured  flows  for  the  full  open  auxiliary  duct is too 
great to  permit assessment of  the  auxiliary  and  main  duct  choking  sequence  by  data  extrapolation. 

Auxiliary duct  entrance  total-pressure  recovery  data  presented in figure 3 6  shows  a  recovery 
increase with  increasing  auxiliary  airflow.  The  recovery  increase  is  due to capture of additional high 
energy  freestream  flow that would  otherwise be  spilled  over the  auxiliary  door lips and  a  reduction 
in  losses  associated with  reduced  capture  stream  tube  area  divergence  upstream  of  the  auxiliary  duct 
entrance.  This  latter  effect is particularly  apparent  when  comparing  entrance recoveries for  the full 
open  duct  with  those  obtained  for  the  intermediate  duct  for  the  same  auxiliary  flow (fig. 36).  That 
is, for  an auxiliary  mass-flow ratio (WC/WL) of  approximately 0.08 the full open  duct  experiences 
approximately  a 0.13 entrance  recovery  reduction.  Entrance  total-pressure  profiles  presented  in 
figure 37  further  illustrate  the recovery  increase  with  increasing  auxiliary  mass-flow  ratio. At critical 
duct  capture  airflows,  the  boundary  layer will occupy 40 and 20 percent  of  the  total  flow  for  the 
intermediate  and full open  ducts,  respectively.  Thus,  referring to  figure 37, higher  entrance 
recoveries  could be  expected  at  critical  flow  rates. 

The auxiliary  duct  plenum  recoveries  presented in figure 36 show  that  the  intermediate 
auxiliary duct provides less airflow  for  the  same  plenum  recovery  than  for  the full open  duct.  This 
would  indicate  that  the  effective  flow area through  the  screen is reduced  for  the  intermediate 
auxiliary duct.  Flow  separation  in  the  cowl  auxiliary  duct  diffuser  could  result  in  this  reduced 
effective  flow  area. 
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Blank-off plates. - The  most  pronounced  effect of installing the screen  blank-off  plates was 
to further  reduce compressor-face  recoveries  and  increase  distortion.  Compressor-face  total  pressure 
profiles  with  and  without  the  blank-off  plates  are  presented  in  figure 38 for  comparable  auxiliary 
airflows  and  for  the  intermediate  auxiliary  duct.  The  results again indicate  the  extreme  sensitivity  of 
compressor-face  performance to the  interaction  between  the  auxiliary  and  main  duct  airflows.  To 
eliminate  this  interaction  effect,  the  screen  should  be  replaced  with  a  flap to enable  efficient 
merging of  the auxiliary  and  main  duct airflows. Candidate  flap  arrangements  are  described  in 
section  “Alternate  Auxiliary  Systems.” 

Supersonic  Operation 

At Mach 1.15, inlet  performance  characteristics were  similar to those  obtained  at Mach 0.9 
in  that cowl  auxiliary  airflow  had  a large detrimental  effect  on  compressor-face  performance  as 
shown  in  figure 39. Because of  shock  boundary-layer  interaction  effects,  the  total-pressure  recovery 
of the auxiliary  airflow was reduced  sufficiently to result  in  premature  choking  of  the  main  duct 
throat flow.  Referring to figure 40, this  choking  sequence  is  evident  in  that  the  cowl  auxiliary 
mass-flow ratio  for  the  intermediate  duct  opening was considerably  lower  than  the  critical value of 
approximately 0.1 while choked  main  duct  throat  flow was  achieved. 

Comparison  of  the  auxiliary  and main duct  choking  characteristics  obtained  at Mach 0.9 
(figure 3 5 )  with  those  obtained  at Mach 1.15  (figure 40) illustrates  a  deficiency  of  a  fixed  exit  area 
cowl  auxiliary  airflow  system.  Specifically,  because  of  auxiliary  airflow  recovery  sensitivity, 
simultaneous  choking of auxiliary  and  main  duct  throat  flows  can  only  be achieved at  the  auxiliary 
duct design Mach number.  Matching  of  duct  choking  characteristics  at off-design Mach numbers 
would  require  a  variable  exit  area  auxiliary  duct.  Replacement  of  the  bypass  screen  with  a  flap 
which  deflects  into  the main duct airflow  would  provide  this  capability.  As  previously  discussed, the 
flap  arrangement  would also improve  compressor-face  performance  by  efficiently merging the 
auxiliary  and  main  duct  airflows. 

Although  the  centerbody  auxiliary  duct  system  employs  a fixed exit  area,  the  auxiliary  and 
main duct  choking  characteristics were not sensitive to  freestream Mach number.  The reason  for  this 
being that,  at high mass-flow ratios,  the  auxiliary  and  main  duct  airflow recoveries at  the auxiliary 
duct  exit  station were  relatively  invariant with  freestream Mach number (see  figures 22 and 23 for 
ACB/AL = 0.107). 

Compressor-face  and  duct  performance  characteristics  at Mach 1.3 are  presented  in 
figures 41 and 42, respectively. The  strong  shock  boundary-layer  interaction  effects  further  reduced 
auxiliary duct  entrance recoveries  and  resulted  in  a  greater  mismatch  between  the  auxiliary  and 
main duct  choke  points. 

Auxiliary duct  entrance  total-pressure  profiles  presented in figure 43 show  that  separated 
flow  was  present  over  the  entire  capture  flow range. The  separation is evident  in that  the  total 
pressures  near  the  surface  are  equal to the  surface  static pressures. The results  indicate  another 
potential  problem  in  application of the cowl  auxiliary duct  system.  Specifically,  terminal  shock 
induced  separation  at  the  auxiliary  duct  entrance  would  prevent  attainment  of full capture  flow  in 
addition to decreasing the auxiliary duct  diffuser  efficiency.  Although  a  flap  arrangement 
incorporating  variable  exit  area  capability  would  maximize  the  auxiliary  flow,  shock  induced 
separation  effects  would  not  be  alleviated. 
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Alternate  Auxiliary  Systems 

Schematic  illustrations  of several alternate  auxiliary  cowl  systems  which  use  one or more 
inner  flaps  for  efficiently merging  auxiliary and  main  duct  flows  are  illustrated  in  figure 44. Both 
systems  provide  overboard  bypass  capability.  The  simplest  arrangement,  arrangement  A,  employs  a 
single inner  flap  which,  in  the closed position,  forms  the  cowl  inner wall  surface.  Upward  deflection 
of  this  flap  forms  the  auxiliary  flow passage. This  arrangement  provides  a  fixed  auxiliary  duct  exit 
area and would not,  therefore,  provide  simultaneous  choking  of  the  auxiliary  and  main  duct  throat 
flows at  critical  flow  rates  at all off-design Mach numbers.  Arrangement  B  provides  a  variable  duct 
exit  area  capability  through  addition  of  a  second  inner  flap.  This  arrangement  would  provide 
matching  at off-design Mach numbers.  Both  arrangements  may  require  a  lengthened  subsonic 
diffuser.  Specifically, the close proximity  of  the  auxiliary  duct  exit to the  main  duct  geometric 
throat (on-design centerbody  position)  may  not  provide  sufficient  space  for  ducting  of cowl throat 
boundary-layer bleed  flows. 

CONCLUDING REMARKS 

An experimental  evaluation of an  approximately 1/3 scale  model of  a Mach 2.65 
axisymmetric  mixed-compression  inlet  with  centerbody  and  cowl  auxiliary  airflow  systems was 
conducted.  The evaluation was conducted in the NASA  Ames 1 1-by 1 1-ft Unitary Plan Wind 
Tunnel  Facility  at Mach numbers ranging from 0.6 to  1.3. 

At  a 0.1 total-pressure  distortion level, the  centerbody  auxiliary  airflow  system  provided  a 
total  capture mass-flow ratio  increase of 0.05 5 and 0.05 1 and a  total-pressure  recovery  increase  of 
0.01 5 and  0.012  at Mach 0.9 and  1.3,  respectively. A geometric  throat  just  upstream  of  the 
compressor  face  limited the  total  capture mass-flow ratio  increase to  less than  the desired  critical 
value of approximately 0.1 1. Operation  of  the  centerbody  auxiliary  system  resulted in main  duct 
flow  separation  on  the  centerbody.  This  separation  reduced  the  effective  main  duct  flow area at  the 
auxiliary  duct  exit  station  and  permitted  choking  of  the  auxiliary  duct  throat  flow  prior to  choking 
of  the main duct  throat  flow.  Premature  choking  of  the  auxiliary  duct  results  in  supercritical  duct 
flow  with excessive total-pressure  recovery losses prior  to  attainment of the  maximum  capture 
airflow. 

Future  work  should  include  recontouring  of  the  inner  cowl  subsonic  diffuser  surface  and  the 
centerbody  support  struts  to  eliminate  the  diffuser  second  throat.  Reducing  the  thickness of the 
centerbody  support  struts  would  eliminate  the  throat.  However,  strut cross-sectional  area 
requirements  for passage of  centerbody  bleed  flows  may  result in a  prohibitive  strut  length 
considering that  the  short  diffuser  requires  the  struts to  penetrate  the  aft  centerbody skirt. 
Achievement  of  a  satisfactory on-design subsonic  diffuser  area  distribution  may also  require 
lengthening  of  the  subsonic  diffuser. 

Cowl  auxiliary  flow  had  a large detrimental  effect on compressor-face  performance. 
Auxiliary  airflow passage through  the  porous  bypass  screen  and  subsequent  interaction  with  the 
main duct  airflow was responsible  for  the  reduced  performance.  Operation  at  subsonic Mach 
numbers  resulted in simultaneous  choking  of  auxiliary  and  main  duct  throat flows.  However,  at 
supersonic  speeds,  shock  boundary-layer  interaction  effects  upstream  of  the  auxiliary  duct  entrance 
sufficiently  reduced  the  auxiliary  flow  total-pressure  recovery t o  result  in  premature  choking  of  the 
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main duct  throat flow. Strong  shock  boundary-layer  interaction  effects  may  prevent  attainment of 
critical  duct  airflows  at Mach 1.3. 

Replacement  of  the  bypass  screen  with  a  flap  arrangement  is  recommended to  obtain 
efficient  merging of auxiliary  and  main  duct flows. A flap  arrangement  would also  allow  variation  of 
auxiliary duct  exit  area to obtain  similar  auxiliary  and  main  duct  choking  characteristics  over  a 
range of  transonic Mach numbers. 

Excellent on-design (centerbody  retracted to Mach 2.65  position)  subsonic  diffuser 
performance was  achieved when  operating  with  a  throat Mach number  of  approximately 0.8 
(representative of  Mach number  downstream  of  throat  terminal  shock wave when  operating  at 
Mach 2.65.) A high  subsonic  diffuser  total-pressure  recovery  of  0.965  and  a  compressor-face 
total-pressure  distortion  of  approximately 0.1 was achieved with  the  centerbody fairing  installed 
and  the cowl  and centerbody  vortex  generators  removed.  Removal  of  the  centerbody fairing 
decreased the  diffuser  total-pressure  recovery  by 0.005 and  increased  compressor-face  distortion  by 
0.02.  Although  the  centerbody  vortex  generators  did  not  degrade  the  diffuser  performance, 
installation of the cowl  vortex  generators  resulted in a 0.04 total-pressure  recovery  loss  and 
increased distortion.  These on-design performance  results  may be  representative  of  the  subsonic 
diffuser  performance to  be  expected  when  operating  at Mach 2.65 provided that  the  terminal  shock 
is near  the  throat  (operation  at  critical  point)  and  that  sufficient  boundary  layer bleed is used to 
prevent  boundary-layer  separation  downstream  of  the  terminal  shock  boundary-layer  interaction. 
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Figure  2.-Model  with  Centerbody Auxiliary Duct Fully Open 



Figure 3.-Model with Cowl Auxiliary Scoops Fully Open 
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Table I. - On-Design Contours 
(centerbody fairing removed) 
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Centerbody 

0 
1 

go Cone 
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6.660 
6.760 
6.810 
6.860 
6.910 
6.960 

Radii 
Centerbody 

0.6954 
0.6989 
0.701 3 
0.7000 
0.6950 
0.6886 
0.6810 
0.6651 
0.6475 
0.627 1 
0.6020 
0.5720 
0.5350 
0.5040 
0.3125 
0.3145 
0.3226 
0.3307 
0.3348 
0.3389 
0.3429 
0.3470 

Station 
X/R L 

6.360 
6.410 
6.460 
6.510 
6.560 
6.610 
6.660 
6.710 
6.760 
6.81 0 
6.860 
6.910 
6.960 

Table 11. - Centerbody  Fairing  and  Support  Strut  Contours 

Centerbody  Fairing 
I 

- 

- 

RIR L 

0.31  25 
0.3465 
0.3786 
0.4062 
0.4264 
0.4389 
0.4388 
0.4270 
0.4058 
0.3843 
0.3660 
0.3555 
0.3470 

Support  Strut 

~ 

R/R L 
Cowl 

0.9275 
0.921 9 
0.91 66 
0.91  19 
0.9080 
0.9050 
0.9020 
0.8960 
0.8900 
0.8850 
0.8825 
0.8852 
0.8920 
0.8980 
0.8980 
0.9000 
0.9084 
0.91  70 
0.9225 
0.9300 
0.9370 
0.9390 

1 

Station 
X/R L 

6.235 
6.360 
6.460 
6.560 
6.660 
6.760 
6.860 
6.960 

Thickness 
t/R L 

0.000 
0.076 
0.138 
0.186 
0.206 
0.190 
0.136 
0.064 

NASA-Langley, 1916 61 


